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OBJECTIVE

Develop an approximate model for the vibration of a two-layered plate. This model
will be applied to the theoretical investigation of the scattering of acoustic waves from sub-
merged structures with coating layer(s).

RESULTS

I. A single equation is developed for the transverse motion of a two-layered plate.

2. An equation is derived for the phase velocity of straight-crested waves.

3. Phase velocities of the first four antisymmetric modes of motion are calculated
for an illustrative case of a steel layer and a copper layer.

RECOMMENDATIONS

1. Employ this model to investigate the behavior of the scattered signal (target
strength) from a two-layered plate. A useful approach is to assume the plate to be loaded
with water on one side and air or water on the other side, then to compute and plot the
transmission and reflection coefficients of an incident acoustic wave. The procedure for
performing the calculations is very similar to that of Graff et al. The variation of the coeffi-
cients versus the angle of incidence and the wavenumber-thickness product yields informa-
tion about target strength and its variation at various modes of plate vibration. Furthermore,
sin ce the coefficients can be computed from the exact theory, a quantitative comparison can
be made and the validity of this approximate model can be examined.

2. Apply this model to a composite plate of one elastic layer (base plate) and one
viscoelastic layer (coating layer), to calculate target strength. Impedance discontinuities
along the plate such as stiffening ribs and varying thickness can be handled by appropriately
modifying the model.

3. Note that this model can also be used where the viscoelastic layer contains
many inclusions and/or cavities, provided the "equivalent effective elastic properties" of
the viscoelastic layer are calculated and used.

4. If experience with a single-layered plate is any indicator, this model should be
improved to provide better resolution of the scattered signal of acoustic waves at grazing
incident angles, possibly by combining it with the "Lyamshev Theory" on symmetric modes

of vibration.
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INTRODUCTION

When an acoustic wave strikes a plate of homogeneous, isotropic, and elastic material,
the plate vibrates in two manners of motion: extensional and flexural, each containing infi-
nite numbers of modes. In extensional motion, the displacement of the material particle,
averaged over the thickness, is in the direction parallel to the plane of the plate. This also
is termed symmetric (or longitudinal) motion, and the associated modes of vibration are
known as symmetric modes. In flexural motion, the average displacement is transverse to
the plane of the plate. This is also termed antisymmetric motion, and the associated modes of
vibration are known as antisymmetric modes. As a result of the combination of these
modes of vibration, any disturbance propagates along the plate at a speed that is not con-
stant but depends on the relative ratio of wavelength and plate thickness. Knowledge of this
dispersive characteristic of wave speed in plates is necessary in the study of wave scattering.

The exact solutions of problems of wave propagation in plates or layered plates of
homogeneous, isotropic, and elastic materials of infinitely extended boundaries have been
reported in the literature. The analysis is very complicated, and the solutions yield relation-
ships between frequency and wavelength that yield an infinite number of dispersion curves.
If the plates have an additional constraint such as a stiffener or a discontinuity in thickness
or in material, it is impossible to obtain an exact solution. As a result, various plate theories
have been established as means of approaching such problems.

The so-called classical theory of plate vibration is based on the Bernoulli-Euler
theory of the bending of a beam when the cross section of the beam is assumed to remain
plane and perpendicular to the neutral axis after bending. The classical theory does not
describe the dispersion of the first antisymmetric mode of vibration and hence is accurate
only for a thin plate at low frequencies of vibration. The Mindlin theory is superior when
the rotary inertia of the cross section and the shear angle of the neutral plane are taken
into account. In fact, the importance of rotary inertia and shear angle on the flexural
motion of an isotropic, elastic, homogeneous beam was first investigated by Timoshenko
(ref 1). Following Timoshenko, Mindlin (ref 2) formulated an approximate, two-dimen-
sional theory of a vibrating plate in which he derived a single equation of motion involving
transverse displacement. The phase velocity of straight-crested waves computed from his
theory was seen to be in excellent agreement with the exact theory of elasticity.

For a two-layered plate, Jones (ref 3) used the exact theory to compute the phase
velocity versus the thickness of the two layers. Lai (ref 4) introduced displacement fields,
which include the shear and the rotary inertia corrections for the two layers. He obtained
an analytical solution for the pressure radiation due to point and shear force excitations on
the free faces of the plate and presented the numerical values of this solution.

Timoshenko, SP, On the Correction for Shear of the Differential Equation for Transverse Vibrations of
Prismatic Bars, Philosophical Magazine, vol 41, p 744-746, 1921.

2 Mindlin, RD, Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,
J of Applied Mech, vol 18, p 31-38, 1951.

3 Jones, JP, Wave Propagation in a Two-Layered Medium, J of Applied Mech, vol 31, p 2 13.222, 1964.

4 Lai, JL, Pressure Radiations from an Infinite Two-Layered Elastic Plate with Point and Shear Force
Excitations, J of Acoustic Soc of America, vol 53, p 486-494, 1973.
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Yu (ref 5) studied the sandwich plate, consisting of a core and two identical faces.
He followed the analysis of Mindlin (ref 2) to formulate an approximate theory that includes
corrections for shear and rotary inertia. In the limiting case where either the core approaches
zero thickness or the two layers vanish, the sandwich plate becomes a single-layered plate and
Yu's results become identical to those of Mindlin's work.

In many applications of acoustics, it is required to express the motion of a two-
layered plate in a single equation of transverse displacement, but no such equation was found
in the literature. This study is aimed at correcting that deficiency. The present analysis
follows very closely analyses in references 2.and 5. Equations of motion in terms of transverse
displacement and expressions of the phase velocity of straight-crested waves are developed
for a plate consisting of two elastic, isotropic, and homogeneous layers of arbitrary thick-
ness.

FORMULATION

Figure 1 shows a two-layered plate of thickness H. The two elastic, homogeneous,
and isotropic layers of thickness hl and h2 are labeled layer 1 and layer 2, each with
Young's modulus Ei, Poisson's ratio vi, shear modulus gi, and density pi. The coordinate
system is shown with plane Oxy coincident with the interface and axis Oz normal to it. The
interface contact is a weld and the layers are extended infinitely in plane Oxy. To simplify
the involved algebra, the problem is restricted to the plane strain condition; only a unit length of
the plate needs to be taken in the y-direction. The displacement in the y-direction and its
derivatives are identically zero. The free faces of the plate are shown loaded with a fluid
that exerts normal pressures pz I and Pz2 on opposite sides.

Following Mindlin (ref 2) we first define the equivalent "plate stress" terms and
correlate them with the strain components, e.0, of each layer. Then we assume the dis-
placement fields u. such that they are continuous at the interface. Finally, we use the
equations of motion in the theory of elasticity:

,m + P fet = pU01

We substitute the previously assumed displacement fields and the expressions for plate
stresses into these equations of motion to obtain the equations of motion for our layered
plate. These new equations of motion correlate the plate stresses and the assumed displace-
ment fields. By using the plate stress-strain relationships, we obtain a set of equations of
motion that relate the assumed displacement fields and the plate's elastic properties.

5 Yu, YY, A New Theory of Elastic Sandwich Plates--One Dimensional Case, J of Applied Mech, vol 26,
p 415-421, 1959.
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Figure 1. Geometry of the two-layered plate.

PLATE STRESS COMPONENTS

The bending moments, in-plane forces, and transverse shearing forces are defined
respectively as follows:

°~ dd, =
Mxl = oxxlzdz, Mx2  Oxx 2z

-hl 0

0 2
Qxl= f rz 1 dz, 2 r 2 dz (1)

oxxi dz, N 2  a
Nxl = f x2 xx2

-h1

where the subscripts 1 and 2 indicate layer I and layer 2.
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From Hooke's law:

uM Xe,~p2ue, .~

We can write the stress-strain relationship as follows:

xxi X=( + 21Ai) exxi + Xezzi

(zzi i + 2pi)ezzi + exxi (2)

7'xzi A ti ̂ fxzi

where Xi and ji are Lam6's constants and are given by the relationships

E_ E

1+Y) (1-2p) ' 2(1+v)

Eliminating ezz from (2) to obtain the stress-strain relationship:

Ei x Zi
Oxx i = li 2 xxi + ,i+2i#i zzi

(3)
Txzi f I~i Txzi

Substitution of (3) into (1) yields the following:

b- E. bi W.
Mxi =f e xxizdz ++2, ozziz dz

Qxi = I' i I7 xzi (4)
ai

Niff i E i I-ib i  x'i

exxi dz + .2i - zzi dz
J, aia i

Since there is no concentrating force acting on the plate in the z-direction, Ozzi, in
general, are small. Consequently the integrals containing Ozzi are negligible compared to
those of the in-plane stresses oxxi. It is therefore assumed that these integrals are equal to
zero, which leads to the following relations:

8



M Ei bi xizdx i f ezd
aj

=~ KjAi fi 7jxzidz (5)

fJ

aj

1Ei b.
xi I Exxi dz

.ai(Nt tha- ndi n usda 2 ista- o .

where K is the shear correction, introduced exactly as in Mindlin (ref 2). K assumes the value[ of lr2/12. (Note that Mindlin used K2 instead Of K.)

PLATE DISPLACEMENT COMPONENTS

Following Mindlin and Medick (ref 6) and Yu (ref 5), the displacement fields can be
written as follows:

ui (x, z, t) = ui(0) (x, t) + z ui(') (x, t)

(6)
wi (x,z,t) = w(x,t)

where the superscripts (0) and (1) denote the order of displacement and the subscript i de-
notes, as before, layer 1 and layer 2. ui(l) represents the slope of the cross section of the
layers with respect to the z-direction. In writing the above displacement fields we made two
assumptions: the cross section of each layer remains plane during bending; and the thick-
ness modes (stretch and shear) are eliminated, by setting wi = w (x, t). Note that if the shear
correction were neglected, as in the classical plate theory, we would have

ui.l) (x, t) = -aw(x, t).ax

The displacement fields are now written as follows:

uI (x, z, t) = 1l(x, t) + z Vt2 (x, t)

u2 (x, z,t) = 0 1(x, t) + z lP3 (x, t) (7)

wI = w2 (x, z, t) = w(x, t)

where @ 1, 'P2, 0 3 , and w are unknown functions. Notice that (7) satisfies the condition of
continuity of displacement at the interface (z = 0).

6 Mindlin, RD, and MA Medick, Extensional Vibrations of Elastic Plates, Yof Applied Mech,vol 2 6, p 561-569,
1959.
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By substituting (7) into the strain-displacement relationship

e =10 (u , + u0,01)

we obtain

au 1

xxl = = "l + z

au 2
Exx2 = x Pi0 + z

(8)
au aw l

'fxzl z = ax 2+

au2  aw2

xz2 = a + 8W2 = W3 +w?
z az ax

where prime (') denotes differentiation with respect to x. Inserting (8) into (5) yields the
following:

El h h12  
2

=X 2- hl2 - 2 -- 1 D I ' - D O
=x E2  (L22 l + L23 ) =D2  1 + 2h 2 D2

1-12 2 3 2

NXI El hl 1  - L ~' 2 0 D, 0#', -DO

(9)
2E2 h22 2 ,

Nx2 - h2 Vl +  2 D2
I + D2"I-P2 2 2 h

Qxl = c pI h, (w' + ) (w' + 2

Qx2 = K A2 h2 (w' + ") = G2 (w' +

10



where

El  h1
2  E2  h22

DI= D2 = -
lVl 2 1- 2

2  2

G I = Kpll h , , G2  K0 2 h2 •

EQUATIONS OF MOTION

The equations of motion in the theory of elasticity,

(where the dot (.) represents differentiation with respect to time t) can be rewritten for the
present case, omitting body forces, as follows:

aoxxi a1rxzi a 2u,
+ -- -Pi - = 0(10a)

ax az at 2

auzzi  a"xzi  a2w
- + - - -= 0 (lOb)
az a x at 2

Multiplying (1 Oa) by z and integrating over the thickness, we obtain, for layer 1,

oa 0a a f° a2u

f -- uxxlzdz + - rxzlzdz -P - -- zdz. (1)
-ax-h i z -h1  a

a
The first term can be readily recognized as T- Mx 1 the second term is integrated by part,

yielding

TxzlZdZ = Zrxz - Qxl
f' az Z Z XZJ X

-h -h

and the third term is rewritten as

0 0 0 plhl2

Pj f iizdz = fp I lzdz +p1 fP, 2z2 dz = h2

-h -h -h

Plhl 3

3
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Hence, (11) becomes
[ 10 plhl2 plhl3

Mx Ql+ Z'xzl +4 241 p'l 'h =  (12)

112
_hIQ1 2 I 3

Similarly for layer 2, we have

ri h2 P2h2
2  2 2

x2- Qx2 + IZxz2 2 - 03 0 (13)
0

Note that the last terms in (12) and (13) represent the rotary inertia of the cross section of
each layer.

When (1 Oa) is again integrated over the thickness, we obtain, for layer 1,

10 Plhl2

N'xI + Txz1J -plhl'l +----- 4'2 = 0, (14)
-h l

2

and for layer 2,

I + h2 h. 2h2
x2+ xz2 - p 2h2 1 2 3 = 0

(1 Ob) is integrated over the thickness, yielding, for layer 1,

~0

Qx I + °zz I Plhl w 0, (16)
i I-hl

and for layer 2,

jh2 w= 0 (17)

Qx 2 + I zz2 - P2h 2  0

12



The boundary conditions of this problem are as follows:

Atz =-h 1 : Ozz I = -Pzl ,rxzl 0

Atz = h2 : Ozz2 Pz2, rxz2 =0

Atz = 0:rxzI = rxz2,Ozz I = 0 zz2

Applying these into (12) and (13) yields

Plhl 2  Il1
MXI- QXlI +  O =-- Y 0. (18)2 3

P2h2  P2h 2
3Mx2 -Qx2 2 411 3 53 = 0. (9

We now apply the boundary conditions into (14), (15), (16), and (17), adding (14)
and (15) to obtain

plhl2  P2h2 2

Nx- (plhl +P 2 h2 ) 01 + 2 02 - = 0 (20)2 2

and adding (16) and (17) to obtain

Ix + P - (PIhI + P 2 h2 ) = 0, (21)

where

Nx = NxI +Nx 2

Qx = Qxl + Qx2

P = Pzl - Pz2

(18), (19), (20), and (21) are the equations of motion involving the plate stresses and the
assumed displacement fields.

Substituting the expressions for plate stress components, (9), into (18) - (21) yields
the following:

2 Plhl 3  plhl 2

Dl 0'' + 3 hlDl 1  - G, (w'+ 0 2 ) = 3 2 2 51 (22)

13



2 P2h2
3  P2h2

2

D2 0"' + - h2D2 3 - G2 (w' + 43) = 03-- 413+ 2 01 (23)

(j2Di +i2 ) 41'l, 41+D 2  p 2h2
2 ""  pIh 2

W1 D  2 D 2 - D2D 3 -2 'P3 2 42

+(plhl +P 2h2 ) I (24)

(GI +G 2) w" +GI O +G 2 ( +p = (Plhl +P 2h2)W . (25)

(22) - (25) are the equations of motion connecting the assumed displacement fields and the
elastic properties of the two layers; they are equivalent to equation 16 of Mindlin (ref 2)
for a single-layered plate. In practical applications, it is sometimes required that the equa-
tions of motion be expressed as a single equation of w(x, t). This can be done by eliminating

1, 12, and 413 between (22), (23), and (24) and substituting into (25). These steps are
performed next.

RESULTS

EQUATION OF TRANSVERSE MOTION

(22), (23), and (24) are rewritten as

LI 0 1 + L2 0 2  LI Iw (22')

L4 4 1 + L6 0 3  
= L 12 w (23')

L741 + L8 0 2 +L 9 13 = 0 (24')

where

plhl 2 a2
LI = DI V2 + P h

2 at 2

2 plhl 3 a2

L2  - h l Dl V2 - G1 at 2

2 at 2

14
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2 P2h2
3 a2

L6 - h 2 D 2 V 3 - t 2

L7 = 2 -- + h2 2 - (ph +P 2h2) 2
I1 h2 1 at

p1h1
2 a2

L8 =- DI V2 + 2 3t2=LI

p2 h2
2 a2

L 9 = D2 V 2  2L4t
2 8t

Li1 = GIV

L12 = G2 V

Hence we have

0= Det (L4 Ll 2w L6

(L 7  0 L/

and

L l  L2  L, lw

[ J 13 = Det L, 0 L1 2w

L7  L8  0 /

where

L1 IL L2  0

* 1 =Det L4 0 L6 )

(L 7  L8  L9

15



Substituting the above into (25) yields

Ll LllIw 0 L1 L2 LlIw\

(GI+G 2) V 2 121]w+G1V L4 L 12 w L6  +G 2V L4 0 L1 2 w

70 L 7 L8 0

at2[IJ (Ph ph 2 [ JAjw =O0 (26)

After expanding the determinants and rearranging the terms of like order, we obtain the
equation of motion in terms of w(x, t):

LIL 4 [I9- V2 (h2 LiG1 + h2LiG 2 -hL 4G l -hlL 4G2 )

4hl h2  2) 2 a2

(± hh + + - (h2L,-hlL4 ) (27)
\3 h2  3 2I at2

''hi G 2 +L2G + L2 G2 P GIG2V

a at 2  3

+L4
2 (G l p P - G.v2\IpG = (,

where

p = p1 hl +P 2h2

and

L LL4 [ (h2L, -h IL4) +~-~ G L

--- (G2L12 + GIL42 ) + 2GiG2

(27) is the single equation of motion of w(x, t) and equivalent to equation 37 of Mindlin
(ref 2).

16



When the two layers are identical,

GI = G2

L1 = L2

h= h2

After some algebraic operations, (27) becomes

(4at 2  9 31 G1 v2t 2

- ( 1 L + GI - Ib p = 0. (28)

(28) is the equation of motion for a single-layered plate; it becomes identical to equation 37
of Mindlin (ref 2) if h/2 is substituted for h 1. We substitute the expressions of L1and L4in-
to (27), expand it, and perform some algebraic operations to yield the complete form of the
equation of motion:

[V8 2 DID 2 (Djh2 +D2hI) (GI +G2)I

6 2)12 2 2 a 2 j/pLh 2 h2  ph 2 h\+V .GIG 2 (D 1 + D2 )- DID 2 -2 + 2 )(GI +G2 )

+ (plhl +P2 h2 ) (Dih2 +D 2hi)]

2 a2 L phL2

9 at 2 (DI 2 + D 2  -2 (Dlh 2 +D 2hj) (GI + G2)

9 at 4 [DlD2 (p hl+ 2 h 2 )\ 2  + 2/

17



"9 &Di 2 2 D 2 l) tP lhl 2 h2 + P2h2
2hli) + G2)

" D, f !2- PI D 2 (p Ih +P2h2) (Dlh 2 +D 2hl)

" plhl 2:2h2 2 (DI 2+ D2 h 1)(GI 2

a2 - 'DD 2 (pjhl +P2 h2)(r 1G2 +r2G1at2 3~

+ VP 2h2 
2  plh 2 

4 li+ 4r2 +2) G1G2

+ IGp1hG 2 (DIi22+ D2 22 GI)

+ I pGIG 2 (plhi 2 + P2h2 2) ( 1 +

+ V~2 h1 h2 0[(DI +P2h2) h2 + D phj Lh

at atk~ 2 + 2  2)( 2p~ 2 ( 1 G + 2 1

p~p~h2 + 2
2 / 4 4

422

4I 2
a 2 IhI~~22) (ll h)(, I

IGIG 2 (I+i f2L

18



+ I (plhl + P2 h2) (G2 DIP Ih1
2 + G1 D2p2h2 2

3

a2  + Dl'
-t - I2GIG2 (pIhl+ P2h2) (i Lh I 2

+L -ia8 (PP 2 h I2h 2 2) ( Ih I+ P2 h 2 ) (lIhI 2 h2 +P 2h2 2h 1)
36 t

at6 ri 2 3~G
+ g 1 Phh (p h 2 p2h 2 ( 1 2 )]

3 ph+P2h2) (G2  .j~ 2 + GI 2 2 )

+ !4 fGIG2 (phI+ P2h2)]f w+.i (29)

with

=V6 . DID2h 2DI + hD 2)

9v 1at2 (D2 (Plhl2h

-D)2+ D2 2 )(h2D + hD 2)I DDrG3~

(2P22 31j2(f 21 2 21;

+2 '2 a4 [(/ 2h2D 2  p'2\~ +

+ 19 at4  2~~D- + 2 2 2

P22

a2 [4/ (p 2h22  ph2 rG 2,
at2 L3 \1D -2 2---- 2 rG+

19



( 2  DI\
DiG 2 lhl2 + D2GiP 2h22) + 2G+G2  h hJ

3 2

+ I- _ PP 2h1 2h22(plh12h2 +P2h2
2hl) a

36 a t6

a4  ri 22
_ 1 PP2hl2h 

2 (rlG 2 + r2G1 )t4

I--G (lhL 2)2 +4GI (P2 h2 
2 ) 2

1

- 2G 1G 2 (plhl +P 2h2) at
2

EQUATION OF PHASE VELOCITY

Consider the straight-crested waves propagating in the x-direction. The fluid loading
term is not needed for the phase velocity equation. We assume the transverse motion of the
plate as

w = A0 ei(kx - kct) (30)

After substituting (30) into (29) we expand and rearrange terms to obtain the phase velocity

equation:

364 (tlRl + t2 R2 ) (RI 3 R2
2tl + R1

2 R2
3t2 )

+ t6 I-- j"T 4 (tIRI +t 2 R2) [(032+2122)Rl3R 2 2tI +(0 2 2+2 3 2)R 12R 23t 2j

6 T4 (tlR1 + t2R2P1
2) [RI3R2 2t, K+ R1

2R2
3t2 K f

-T KT (tI RI + t2R2) [12 I(R2rlO 1l2 + Rlr2tl)
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+ 4{1

+ T4 (tlR l + t 2 R2 ) [R 1 3R 2 2t, 024 + 20022032)

+ R1
2R2

3 t2 (f34  2 222332)1

l T4 (tI RI + t 2 R 2 P31
2 ) [RI 3 R 2 2tl K (3 3

2 + 2,2 2 )36

+ R1
2R2

3 t2 K (022 + 203 2)]

T2 (tlR + t2 R2) [RIR 2 K (0322 +332) (R2rl 1
2t2 + Rlr 2 t1 )

3

+ - P2 2t iR,3K I -1 -+ 3 2t2R23 K
22+-I 2  

2
1 23 1 2R14 + 1t2 2 R2J + tlt 2 R 12R 22(4 rl + 3r 2 +2)]

4 3+

+ Ic2pl 2 (tlR1 + t2 R2) (tIR 1 + t2R 2)

+ t2 - T(tlRI +t 2 R2 ) IR 13R 22t,13 240 3 2+RI2R23t 2022 341

- I Rl + t2 R2/#1
2) R I 3R 2 2t li 4 + 2K2

2 33
2)

+ R1
2 R2

3 t2 (.834 + 20223 32)

I T2( + t2R2) IR1R 2 (R2 rl1312t2 + 2 2
3 + R23 34

+ + i R 3t1 24 pI2 + -R 2 3t 2 P 3 41

1 T,2 2 2 2 2 222T K 12 [2. 2 2t12R 1 + 032t22R24
4143 3 2

+ 22 +(32) tlt 2 R 2 R 2
2 ( 4 r, +-± r2 + 2)
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- K2# 1
2 (tlR l +t 2 R 2 )(3 2

2 tlRl +03 2t 2 R 2 )1

+ 1 T221 2 (t 12 R14 124 + t22R24034)

1 2R2R2212222 4 41

+ -T2tlt 2 R 2 K 2p2 133 (-4rl+4r 2 +2) = 0 , (31)

where

2=C cc 2 , 2= s2
2 /Csl 2

022 = 232 = cp22/Csl2

h1  h2

rl =-, r2 ="-1

h12h

hl +h 2 = H ,R 1  H ' R 2  -

T =kH,

tj P1 P2
t P +P 2 2  Pl +P2

and

c = W/k = phase velocity of the straight-crested waves

cs 1' Cs2 = shear wave velocity csi = (mi/pi)1/2 in layer I and layer 2

Cpl, cp2 = longitudinal plate wave velocity cpi = [Ei/P i (1 - i2)] in layer 1 and layer 2.

(31) is the equation of the phase velocity. Examination shows four branches of the phase
velocity curves versus T, the wavenumber-thickness product. It is readily verified that when
the two layers are identical, (31) becomes the equation for a single plate of the Timoshenko-
Mindlin model.

NUMERICAL RESULTS

The numerical results of phase velocity curves were computed for a component plate
of a steel layer (layer 1) and a copper layer (layer 2). The elastic properties of these layers
are as follows:
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Steel

E1  = 2.168663X10
11 N/m2

p, = 0.283629

Pl = 7.8 X 103 kg/m
3

Cpj = 5498.7 m/s

Csl = 3290.9 m/s

CR1 = 3044.9 m/s

Copper

E2  = 1.22X10" N/ m 2

P2 = 0.33

P2 = 8.9 X 103 kg/m 3

C = 3922.1 m/s

Cs2 =2270.1 m/s
CR2 = 2115.8 m/s

cRi are the Rayleigh wave velocities.

The normalized phase velocity c = c/csl is plotted versus the wavenumber-thickness
product, T = kH. Appendix A shows the resulting curves for nine thickness ratios R I = h I/H.
The following comments pertain to those curves.

As T increases from zero, curves 1 (first antisymmetric mode of motion ) increase
rapidly until T = 2 and gradually reach an asymptotic value lying within the interval
cR2/cs 1 - cRl/csl and increasing with thickness ratio R1. This can be explained easily on
the following physical ground. For the limiting case of a single layer, curves 1 attain the
Rayleigh wave speed for large T; for the case of two layers, the asymptotic value of curves I
tend to reach the Rayleigh wave speed of the thicker layer. Furthermore, the shape of
curves I is very similar to that of the exact solution (ref 3).

Curves 2, representing the phase velocity of the second antisymmetric mode of motion.
reach asymptotically the plate wave speed of the soft layer, in this case 1. 19. When T = 0,
the starting points of these curves increase from cp 2/cs I to c I/cs 1 , or from the plate wave
speed in copper to that in steel as R1 increases from 0.1 to 0.3. Similarly, curves 4, represent-
ing the phase velocity of the fourth antisymmetric mode of motion, reach asymptotically the
plate wave speed of the hard layer - in this case steel, with cpI/csl = 1.67. The asymptotic
values of curves 2 and 4 do not change with varying R 1.

Curves 3, representing the phase velocity of the third antisymmetric mode of motion,
are seen to wander within the band delimited by curves 2 and 4. The asymptotic values of
curves 3 behave similarly to those of curves 1, shifting toward the plate wave velocity of the
thicker layer as R1 increases from 0. 1 to 0.9.
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CONCLUSIONS

An approximate theory of motion of a two-layered plate of elastic, isotropic, and
homogeneous materials was developed. Shear and rotary inertia corrections were included
in the theory. Equations of motion and of the phase velocities of straight-crested waves
were derived. In the limiting case, these equations were shown to be identical to those of
single-layered plate. Numerical results showed that dispersive curves of the phase velocities
versus the wavenumber-thickness product of the first four antisymmetric modes of motion
behave very similarly to those of the exact solution developed by Jones (ref 3). The phase
velocity of the lowest mode reaches an asymptotic value lying within the individual Rayleigh
wave speeds of the two layers. The asymptotic values of the phase velocities of the second
and the fourth modes are recognized as the plate wave speeds of the two layers. The curve
representing the third mode is seen to wander within those asymptotic values of the second
and fourth modes.

RECOMMENDATIONS

1. Employ this model to investigate the behavior of the scattered signal (target
strength) from a two-layered plate. A useful approach is to assume the plate to be loaded
with water on one side and air or water on the other side, then to compute and plot the
transmission and reflection coefficients of an incident acoustic wave. The procedure for
performing the calculations is very similar to that of Graff et al (ref 7). The variation of
the coefficients versus the angle of incidence and the wavenumber-thickness product yields
information about target strength and its variation at various modes of plate vibration.
Furthermore, since the coefficients can be computed from the exact theory, a quantitative
comparison can be made and the validity of this approximate model can be examined.

2. Apply this model to a composite plate of one elastic layer (base plate) and one
viscoelastic layer (coating layer), to calculate target strength. Impedance discontinuities
along the plate such as stiffening ribs and varying thickness can be handled by appropriately
modifying the model.

3. Note that this model can also be used where the viscoelastic layer contains
many inclusions and/or cavities, provided the "equivalent effective elastic properties" of
the viscoelastic layer are calculated and used.

4. If experience with a single-layered plate is any indicator, this model should be
improved to provide better resolution of the scattered signal of acoustic waves at grazing
incident angles, possibly by combining it with the "Lyamshev Theory" on symmetric modes

of vibration.

7 Graff, KF, CA Klein, and RG Kouyoumjian, Technical Report 4720-2, A Study of Several Approximate
Theories for Calculating the Reflection of Acoustic Plane Waves from Elastic Plates, prepared for NOSC
under Contract N66001-77-C-0195, Ohio State University ElectroScience Laboratory, Columbus OH,
15 December 1978.
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APPENDIX A: PLOTS OF NORMALIZED PHASE VELOCITY
VS WAVENUMBER-THICKNESS PRODUCT

Each figure consists of four dispersive curves of dimensionless phase velocity versus
the wavenumber-thickness product, for a given thickness ratio R I = h I/H. The four curves
are labeled 1-4 to represent the first through the fourth antisymmetric mode of motion.
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